Swiss study for solutions for large dams – fish behavior and guiding efficiency of bar racks and louvers for fishes during downstream migration at hydropower facilities

1Armin Peter, 2I. Albayrak, 1T. Boes, 1D. Fluegel, 3C.R. Kriewitz, 2R.M. Boes

1Eawag Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum – Switzerland and A. Peter, Peter FishConsulting

e-mail: armin.peter@eawag.ch

2VAW Laboratory of Hydraulics, Hydrology & Glaciology, CH-8093 Zurich

3BKW Energie AG, CH-3013 Bern

Atlantic Salmon Summit – October 2, 2015 – Huningue F
Downstream migration study of smolts 2014/2015

timing of migration: from end of November – early May

important parameters: temperature and discharge

temperature: > 6 °C

downstream migration is linked with increased discharge

1st year: 865 parrs were PIT tagged in fall/winter:
16.4 % migrated downstream in the following winter/spring
3 % one year later
Swiss Law: Latest revision (2012)
obligation to restore rivers
restore connectivity for fishes till 2030

• Cantons have to plan and enact re-establishment of fish migration
• all hydropower plants have to be remediated until 2030
• operators are fully compensated (funded with 0.1. cents per KW/h, ca. 50 Mio.SFr./y)
Hydropower plant Rheinfelden River Rhine Bypass: length 900 m, discharge 10-15 m3/s
Project
«downstream migration of fish at big hydropower plants»
Partners

VAR Verband Aare-Rheinwerke
(collective of 32 hydropower plants)

VAW Laboratory of Hydraulics, Hydrology and Glaciology)

Eawag Swiss Federal Institute of Aquatic Science and Technology
Example KW Oderwitz from Ebel 2013:
discharge $7.5 \text{ m}^3/\text{s}$
Screen spacing: 20 mm
horizontal screen
Hydropower plant Willstätt River Kinzig Germany
Screen spacing: 10 mm, vertical screen
Louver Holyoke Dam Connecticut River MA
135 m long, 15° angle, 51 mm slat spacing, flow velocities: 0.3-0.9 m/s

efficiency
Atlantic salmon Smolts +++ (85-90%)
sturgeon +++
eel +
Wanapum Dam Columbia River OR
Downstream migration over the slide
70% of smolts,
99% survival rate

Wanapum dam
discharge at low flow: 3000-4000 m3/s

Discharge at the slide
April – August 566 m3/s
Hydropower plant Birsfelden

Fish fauna High Rhine about 40 fish species
ethohydraulic model: 30 m long, 1.8 m wide, discharge 1200 l/s
water depth: 90 cm, velocities used: 30-90 cm/s

guiding array angled 15°
guiding array angled 30°
Tested configurations

Louvers angled at 15 and 30 degrees to the flow
Clear spacings of the slats: 5 and 11 cm
Water velocities: 30 and 60 cm/s
With and without bottom overlay

Bar racks (45°) angled at 15 & 30 degrees to the flow
Clear spacings of the slats: 5 and 11 cm
Water velocities: 30 and 60 cm/s
With and without bottom overlay

Guidance array angled at 30 degrees (Null-configuration)
Slats parallel to the flow, 5 cm clear spacing, 60 cm/s
Used fish species, only wild fish

grayling (*Thymallus thymallus*) threatend

picture D. Flügel
barbel (*Barbus barbus*) potentially threatened

spirlin (*Alburnoides bipunctatus*) threatened

pictures D. Flügel Eawag and A. Hartl
brown trout (*Salmo trutta fario*) potentially threatened

eel (*Anguilla anguilla*) threatened

pictures D. Flügel & A. Peter
results Louver

- **Louver**

 Little success with slats spaced 11 cm apart and 0.3 m/s or 0.6 m/s: 55 % of *barbel* and 35-40 % of the *spirlin* go the way to the turbine.

 Better results with slats spaced 5 cm: 5 %/35 % of the barbels go the way to the turbine, and 10%/25 % of the *spirlin*.
results bar racks

• bar racks
arrays angled 15°: slats spaced 5 cm apart with 0.3 m/s and 0.6 m/s: 83-95% of the barbels and 83-100 % of the spirlin swim into the bypass

• arrays angled 30°: slats spaced 5 cm apart, with 0.3 m/s and 0.6 m/s: 86-95 % barbels and 75 % of spirlin swim into the bypass
Comparison with versus without bottom overlay I

eel arrays angled 15°: bar rack, slat space 5 cm, 0.6 m/s
without: 73 % use the bypass
with: 91 % use the bypass
Comparison with versus without bottom overlay II

grayling
arrays angled 30°, bar rack, 5 cm slat space, 0.6 m/s
without: 35 % in the bypass
with: 96 % in the bypass

Barbel
arrays angled 15°, bar rack, 5 cm slat space, 0.6 m/s
without: 83 % (winter experiments)
with: 100 % in the bypass
Comparisons with bottom overlay III

also the performance of brown trout
was positively influenced by the bottom overlay
Results general statements

• in summer fish collaborate better than in winter (willingness for downstream movements)
• approaching the guiding array: mainly tail first
• no injuries from the experiments
• water temperature: temperature increase 1-2° per day
Conclusion

- Bar racks generate promising results and are favored over Louvers.
- Arrays with a bottom overlay have a higher fish guiding efficiency.
- Null configurations had reduced guiding efficiency.
- Additional studies are needed to test different bypass configurations.
- Testing of transferability of lab studies to a real hydropower plant situation (pilot study).
Acknowledgment

- Verband Aare-Rheinwerke VAR
- Swiss Federal Office of Energy
- Federal Office for the Environment
- swisselectric research
- David Flügel, Tamara Bös, Nils Schölzel, Brigitte Germann, Cyrill Kern
- Robert Kriewitz, Ismail Albayrak, Robert Boes, VAW
- VAW team
- pictures: David Flügel, VAW und A. Hartl (1 picture)
Links

YouTube video «downstream»

https://www.youtube.com/channel/UC4VvlqIG9gwMQAH2M3a9m8A
Thank you